Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
U111(X1, mark(X2)) → U111(X1, X2)
ACTIVE(isNatIList(zeros)) → MARK(tt)
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(U11(tt, L)) → S(length(L))
MARK(zeros) → ACTIVE(zeros)
ISNATILIST(mark(X)) → ISNATILIST(X)
MARK(length(X)) → LENGTH(mark(X))
AND(active(X1), X2) → AND(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ISNATLIST(mark(X)) → ISNATLIST(X)
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U111(active(X1), X2) → U111(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(length(nil)) → MARK(0)
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(isNatIList(V)) → MARK(isNatList(V))
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
MARK(0) → ACTIVE(0)
ISNATILIST(active(X)) → ISNATILIST(X)
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
U111(X1, mark(X2)) → U111(X1, X2)
ACTIVE(isNatIList(zeros)) → MARK(tt)
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(U11(tt, L)) → S(length(L))
MARK(zeros) → ACTIVE(zeros)
ISNATILIST(mark(X)) → ISNATILIST(X)
MARK(length(X)) → LENGTH(mark(X))
AND(active(X1), X2) → AND(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ISNATLIST(mark(X)) → ISNATLIST(X)
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U111(active(X1), X2) → U111(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(length(nil)) → MARK(0)
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(isNatIList(V)) → MARK(isNatList(V))
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
MARK(0) → ACTIVE(0)
ISNATILIST(active(X)) → ISNATILIST(X)
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 9 SCCs with 28 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(ISNATILIST(x1)) = (4)x_1   
POL(mark(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ISNATLIST(x1)) = (4)x_1   
POL(active(x1)) = 4 + (4)x_1   
POL(mark(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(mark(x1)) = 1 + x_1   
POL(ISNAT(x1)) = (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/4 + (2)x_1   
POL(AND(x1, x2)) = (1/4)x_2   
POL(mark(x1)) = 1/4 + (4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(AND(x1, x2)) = (4)x_1   
POL(mark(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(LENGTH(x1)) = (4)x_1   
POL(active(x1)) = 4 + (4)x_1   
POL(mark(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(mark(x1)) = 1 + x_1   
POL(S(x1)) = (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.

U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/4 + (2)x_1   
POL(U111(x1, x2)) = (1/4)x_2   
POL(mark(x1)) = 1/4 + (4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1 + x_1   
POL(U111(x1, x2)) = (4)x_1   
POL(mark(x1)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 2 + (4)x_1   
POL(CONS(x1, x2)) = (1/2)x_2   
POL(mark(x1)) = 2 + (2)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(CONS(x1, x2)) = (4)x_1   
POL(mark(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(isNatIList(V)) → MARK(isNatList(V))
MARK(zeros) → ACTIVE(zeros)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isNatIList(V)) → MARK(isNatList(V))
The remaining pairs can at least be oriented weakly.

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25,35]:

POL(mark(x1)) = x_1   
POL(U11(x1, x2)) = x_1 + (2)x_2   
POL(and(x1, x2)) = x_1 + x_2   
POL(0) = 0   
POL(ACTIVE(x1)) = (1/4)x_1   
POL(active(x1)) = x_1   
POL(cons(x1, x2)) = x_1 + (2)x_2   
POL(MARK(x1)) = (1/4)x_1   
POL(tt) = 0   
POL(isNatList(x1)) = 0   
POL(zeros) = 0   
POL(isNatIList(x1)) = 1/4   
POL(s(x1)) = x_1   
POL(isNat(x1)) = 0   
POL(length(x1)) = x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

active(isNat(0)) → mark(tt)
active(length(nil)) → mark(0)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatIList(V)) → mark(isNatList(V))
active(and(tt, X)) → mark(X)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
mark(nil) → active(nil)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25,35]:

POL(mark(x1)) = 0   
POL(U11(x1, x2)) = 1   
POL(and(x1, x2)) = 1   
POL(0) = 0   
POL(ACTIVE(x1)) = (1/4)x_1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(MARK(x1)) = 1/4   
POL(tt) = 0   
POL(isNatList(x1)) = 1   
POL(zeros) = 1   
POL(isNatIList(x1)) = 1   
POL(s(x1)) = 0   
POL(isNat(x1)) = 1   
POL(length(x1)) = 1   
POL(nil) = 0   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented:

cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(zeros) → ACTIVE(zeros)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.